電磁界観測による北陸の冬季雷性状の研究

板本直樹^{*1} 川村裕直^{*1} 新庄一雄^{*1}

1.はじめに

北陸地域の日本海沿岸では冬季雷による超高圧 送電線の2回線事故が多く発生し,大規模停電や 瞬時電圧低下など電力系統に深刻な被害を与える。 この冬季雷による送電線事故は,夏季雷に基づい た耐雷設計では対応できないため,冬季雷を対象 とする研究が行われてきた^{(1)~(3)}。これまでの研究 により,北陸地域に発生する冬季雷は継続時間が 長い,エネルギーが大きい,多地点落雷が多い, 高構造物への落雷が集中するなど,夏季雷の性状 と大きく異なることが確認されているが,耐雷設 計に十分反映されていない。

電力設備の耐雷設計に用いる重要なパラメータ として雷電流波高値,波頭峻度,電荷量などがあ る。雷電流波高値と波頭峻度は送電線の逆フラッ シオーバ事故に,電荷量は避雷器の損傷事故や架 空地線の素線切れに影響する。このため,観測に より冬季雷パラメータを明らかにし,冬季雷に対 応した電力設備の耐雷設計を行うことが重要であ る。

電電流の測定には,シャント抵抗やロゴスキー コイルを用いた直接的な観測⁽²⁾⁽³⁾があるが,特定 の対象構造物への雷電流しか取得できず,更に, データの収集効率が悪く,多くの時間と労力が必 要となる。一方,落雷時の放射電磁界を利用する 方法は,広範囲な観測が可能であり,データの収 集効率が高いという利点があり,雷性状の地域差 や構造物による違いについても把握できるものと 期待される。

本論文では,1999 年度から2005 年度まで,北 陸地域において落雷に伴う電磁界観測を行い,送 電線事故との照合・分析により,北陸の冬季雷性 状について検討した結果について報告する。

2. 観測方法

電磁界観測局の配置図を第1図に示す。石川県 の金沢市,白山市,小松市に電磁界観測局を設置 し,主に,石川県と福井県の日本海側で発生する

第1図 電磁界観測局の配置図

冬季雷を対象とした観測を行っている。

電磁界観測局を第2図に示す。観測局では磁界 を測定する直交ループアンテナと電界を測定する 電界センサが設置されている。落雷からの放射磁 界を得ることにより,落雷方向の特定と雷電流の 推定を行い,電界波形は極性の判別と波形形状の 確認に利用する。サンプリング時間および波形記 録時間は可変であり,サンプリング時間は100 n sに設定し,波形記録時間は20ms~100msの範囲 に設定している。電磁界観測装置の時刻はGPS 時計を基準としており,一方,送電線事故の記録 装置もGPS時計による時刻管理を行っているた め,送電線事故と落雷データとの高精度の照合が 可能となっている。

電磁界波形からの雷電流の推定には,負極性帰 還雷撃について広く受け入れられている手法があ り,観測した電磁界データの解析に適用し,雷電 流値として示した。

^{*1} 技術開発・環境保全センター 電力品質チーム

第2図 電磁界観測局

3. 観測結果

(1) 雷電流の極性

1999 年度から 2004 年度の冬季の送電線事故と 照合できた電圧階級別の落雷数を第3図,夏季の 送電線事故と照合できた電圧階級別の落雷数を第 4図に示す。なお,夏季は 2005 年度から電磁界観 測を開始しており,2005 年度のみのデータとなっ ている。

冬季の送電線事故と照合できた 60 件の電磁界 データの極性は正極性 58% (35/60 件),負極性 42% (25/60 件)である。電圧階級別でみると 66/77kV 階級は正極性が 68%(25/37),275kV 階級 は 58%(7/12 件),500kV 階級は 27%(3/11 件)であ り,電圧階級があがるほど負極性の比率が高くな る傾向がみられた。

一方,夏季の送電線事故と照合できた雷電流は 19件であり,すべて負極性であった。

- (2) 負極性雷放電に伴う電界波形の特徴
 - a. 冬季の負極性雷放電

冬季の負極性雷放電に伴う電界波形の例を 第5図に示す。2002年12月に観測された電 界波形で,電流波高値は-177kAと推定される。

すべての下向き帰還雷撃の電界波形の立ち 上がり部分に共通にみられるスローフロント, ファーストトランジションが明らかでなく⁽⁴⁾, 小さなパルスが重畳している。また,下向き 帰還雷撃にみられる短くとも数 ms 以上の上 空からのステップトリーダによる規則的な単 極性パルスが観測されていない。さらなる特 徴は,最大電界パルスのピーク後の逆極性へ の振れが大きく,ゼロクロス時間が比較的短 いことである。冬季に観測した負極性雷放電 25 件のうち 22 件がこのタイプの雷放電であ った。この雷放電は,送電線の逆フラッシオ ーバを発生させるのに十分な波高値と立ち上 がり峻度をもつ。

第5図 上向き負極性雷放電に伴う電界波形の例 この負極性雷放電の特徴は,上向き正極性 リーダによる雷放電モデル⁽⁵⁾で説明できる。 鉄塔先端から上向きに進展した正極性リーダ と,雷雲内の別の負極性リーダとの結合点で 大電流パルスが発生する。負極性リーダの末 端は開放されているので電流波は完全不反射 し,それが重畳するため電流波形は短波尾に なる。この電流波が大地へ向けて下降し短絡 状態に近い地上端で反射して上昇し,雷雲内 の負極性リーダの末端でさらに反射する。開 放端に近いリーダ末端での負反射により,電 界波形では逆極性の大きなピークとして観測 される。

b.夏季の負極性雷放電

夏季の負極性雷放電に伴う電界波形の例を 第6図に示す。2005年8月に観測された電界 波形で,電流波高値は-116kAと推定される。

最大の電界パルスの立ち上がり部分に下向 き帰還雷撃の特徴であるスローフロント,フ ァーストトランジションが明らかである。さ らに,その直前に負極性ステップトリーダに よるものと思われる規則的な単極性パルスが みられることから,下向き帰還雷撃と推定さ れる。夏季に観測した雷放電に伴う電界波形 のすべてがこのタイプであった。

第6図 下向き負極性雷放電に伴う電界波形の例

(3) 正極性雷放電に伴う電界波形の特徴

冬季の正極性雷放電に伴う電界波形の例を第7 図と第8図に示す。第7図の波形はスローフロン トとファーストトランジションが明確でなく,立 ち上がり部分に小さなパルスが重畳している。ま た,最大パルス後の逆極性への振れが大きい。第 4図の負極性雷放電と同様,上向きリーダ進展に よる雷放電と推定される。冬季に観測した正極性 雷放電35件のうち26件がこのタイプであった。

第8図の波形はスローフロントとファーストラ ンジションが明確で,最大パルス後の逆極性の振 れが小さく,下向きリーダで開始する雷放電と推 定される。冬季に観測した雷放電のうち,9件が このタイプの雷放電であった。

第7図 上向き正極性雷放電に伴う電界波形の例

第8図 下向き正極性雷放電に伴う電界波形の例

(4) 雷放電の分類

電界波形より推定した冬季の雷放電の分類を第 1表に示す。冬季に観測した雷放電の82%(48/60 件)は,上向き雷と推定され,負極性雷の92% (22/25 件)は上向き雷と推定される。この負極性雷 に伴う電界波形は,第4図に示す逆極性へ大きく 振れ,ゼロクロス時間が短いなど共通した特徴を もつタイプの雷放電であった。

特に,事故を引き起こした超高圧送電線は比較 的標高の高い山岳地域を通過しており,高度の低 い雷雲の電荷の影響を受けやすいことから,鉄塔 先端から上向きにリーダが進展していく上向き雷 放電が多くなったものと思われる。

電圧階	負極性		正極性		
級	上向き	下向き	上向き	下向き	
500kV	8	0	2	1	
275kV	5	0	5	2	
66• 77kV	9	3	19	6	
合 計	22	3	26	9	

第1表 冬季の雷放電の分類

(5) 雷電流の波高値

66・77kV 送電線事故の雷電流波高値を第9図, 超高圧送電線事故の雷電流波高値を第10 図に示 す。66・77kV 送電線事故では,夏季の雷電流波高 値(絶対値)は100kA 以上が約30%程度であるが, 冬季の雷電流波高値は正極性,負極性ともに 100kA 以上の大電流雷が半数以上を占めており, 大電流の比率が高くなっている。

超高圧送電線事故は夏季のデータが少なく比較 が難しいが,冬季の雷電流波高値は正極性,負極 性とも大電流の比率が高くなっており,特に負極 性の場合は,-100kAから-200kAの範囲に集中し ている。これらの負極性大電流雷は,すべて第4 図に示す上向き雷放電と推定される雷である。

第9図 66・77kV 送電線の雷電流波高値

4. 超高圧送電線事故の事故原因の推定

北陸の日本海沿岸地域において,冬季の超高圧 送電線事故が多く発生し,特に2回線にまたがる 多相事故の発生率が高い⁶⁶。

電磁界波形と送電線事故を照合・分析した結果 から、冬季の超高圧送電線事故に上向き雷が大き く関与していることが確認できた。これは、高度 の低い雷雲に誘発され、鉄塔先端から上向きにリ ーダが進展する雷放電により、鉄塔雷撃率が夏季 に比べて高くなったものと推定される。さらに、 電磁界波形より算出した雷撃電流波高値は、 100kAを超える大電流の比率が高くなることを示 している。冬季に超高圧送電線事故が多く発生す る理由として、上向き雷放電による鉄塔雷撃率が 高いことと大電流の比率が高いことが原因として 考えられる。

- 5 . E M T P 解析
- (1) 解析手法

500kV 送電線事故について, EMTPを用いた シミュレーション解析を行った。第11 図に鉄塔モ デル,第2表に計算緒元を示す。雷撃電流波形は 電磁界波形に基づいて推定した電流波形を適用し た。また,送電線モデルは周波数依存型 J.Marti 多相モデル,送電鉄塔は実際の鉄塔形状に基づく 四段鉄塔モデルを用いた。

第11図 EMTP解析における鉄塔モデル

項目		値			
ペキャンジャン・シークシンフ	Zt1	120			
	Zt2	120			
塔脚接地抵抗 Rf		10			
送電線モデル		J.Marti多相モデル			
鉄塔モデル		実際の形状に基づく四段モテル			
雷擊電流波形		電磁界波形より推定			

第2表 EMTP計算諸元

(2) 計算結果

EMTPによる解析結果を第3表に示す。推定 した雷撃電流値を用いたシミュレーションでは, すべてのケースで碍子間電圧がフラッシオーバ電 圧までに至らなかった。しかし,雷撃電流値を1.3 倍することにより,No3のケースを除いてほぼ送 電線事故様相を再現できた。No3のケースはフラ ッシオーバ電圧に達しなかった。

雷撃電流値の補正後のシミュレーションで再現 できたことは,電磁界波形に基づく電流値の推定 モデルに課題があり,第9図,第10図に示した電 流値よりも大きいことを示している。

第3表	ЕМТ	P解析結果
-----	-----	-------

		重報重法	1L			2L		
N 年月日 o	⊞≢电//ĭ (kA)	U	М	L	U	М	L	
1	2003/12/12	+300						
2	2002/12/17	+210						
3	2002/11/27	-121						
4	2002/01/29	-140						
5	2002/01/09	-139						
6	2001/12/22	-196						
7	2001/12/15	-168						
8	2001/01/15	-240						
9	1999/12/06	-179						

(注) 上段:実際の逆フラッシオーバ相下段:シミュレーション結果

○ :フラッシオーバ

今回の解析では,通常の負極性帰還雷撃電流と 電磁界波形の関係をそのまま適用して,雷撃電流 値を推定した。ただし,上向き雷については異な るモデルを適用する必要があり,下向き雷に基づ くモデルによる推定値と,EMTP解析から推測 される電流値が異なってくるのはむしろ当然であ る。上向き雷放電モデルの構築により雷撃電流の 推定精度を上げることを今後の課題としたい。さ らに事故様相との関係を分析して,冬季雷に対応 した合理的な電力設備の耐雷設計につなげる研究 を今後の目標としたい。

6.まとめ

北陸地域の送電線事故と電磁界波形との照合・ 分析を行い,以下の結論を得た。

(1)冬季の送電線事故と照合できた電磁界データ から推定した雷撃電流の極性は正極性 58%,負極 性 42%である。超高圧送電線事故に限れば,負極 性が 73%であり,負極性の雷撃電流が多くなって いる。

(2)電界波形の特徴より,冬季の送電線事故と照合 できた雷の多くは,鉄塔先端からリーダが上向き に進展する雷放電と推定される。雲底の低い冬季 の雷雲の影響によるものと思われる。一方,夏季 の雷放電はすべて下向きリーダで開始する雷放電 である。

(3)夏季の送電線事故と照合した雷放電はすべて 負極性で,その電流波高値(絶対値)は100kA以上 が30%程度である。一方,冬季の雷放電は正極性, 負極性ともに100kA以上が半数を超え,夏季に比 べ大電流の比率が高くなっている。

(4)北陸地域において冬季の超高圧送電線事故が 多い原因として,夏季に比べて大電流の比率が高 いこと,高度の低い雷雲に誘発された鉄塔先端か らの上向きリーダが進展する雷放電による鉄塔雷 撃率の高さによるものと推定される。

(5)負極性帰還雷撃モデルにより推定した雷撃電 流波形を用いて実際の送電線事故現象についてシ ミュレーション解析した結果,推定した雷撃電流 値を 1.3 倍することで再現することができた。こ のことは,冬季の上向き雷に対しては推定値より さらに大電流である可能性が高く,上向き雷放電 に対応したモデルの構築が必要である。

参考文献

- 前雷設計委員会送電分科会:「冬季における日本海沿岸地域 での雷観測」,電中研報告,T11,1989
- Y.Matsumoto,O.Sakuma, K.Shinjo, "Characteristics of Winter Lightning Current on Test Transmission Line Equipped with Arresters Struck by Natural and Triggered Lightning," IEEE Trans.Power Delivery, Vol.11, No2, pp.996-1002, April 1996.
- N.Itamoto,K.Shinjo,T.Wakai,T.Sakai,"Observation of Winter Lightning at the 275kV Okushishiku Test Transmission Line,"in Proc. 10th ISH Montreal, Vol.5, pp.59-62, 1997.
- M.Ishii,J.Hojo, "Statistics of Fine Structure of Cloud-to Ground Lightning Field Waveforms," Journal of Geophysical Research, Vol.94, No.D11, pp.13267-13274, 1989.
- 5) 宮嵜,斎藤,石井:「上向き雷放電に伴う電磁界波形の特徴 の再現」,平成18年電気学会全国大会,No7-130
- Sugimoto, "Lightning protection against winter lightning," Proc.28thICLP, Kanazawa, Special Session, 2006.